客户服务

扫一扫  添加小助手

服务热线
13818320332

渠道代理
签到有奖
扫码关注

扫一扫  关注我们

傅里叶变换、热传导方程与温室效应(下)

傅立叶变换:表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。 热传导方程(或称热方程):是一个重要的偏微分方程,它描述一个区域内的温度如何随时间变化。 温室效应:又称“花房效...

 

 注册用户专享内容,请登录观看

曜分享

请登录后观看...

 

详情

傅里叶变换提出:
傅里叶 是一位法国数学家和物理学家的名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号可以由一组适当的正弦曲线组合而成。当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),当拉普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在他此后生命的六年中,拉格朗日坚持认为傅里叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。法国科学学会屈服于拉格朗日的威望,拒绝了傅里叶的工作,幸运的是,傅里叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因会被推上断头台而一直在逃避。直到拉格朗日死后15年这个论文才被发表出来。
拉格朗日是对的:正弦曲线无法组合成一个带有棱角的信号。但是,我们可以用正弦曲线来非常逼近地表示它,逼近到两种表示方法不存在能量差别,基于此,傅里叶是对的。
用正弦曲线来代替原来的曲线而不用方波或三角波来表示的原因在于,分解信号的方法是无穷的,但分解信号的目的是为了更加简单地处理原来的信号。用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有的性质:正弦曲线保真度。一个正弦曲线信号输入后,输出的仍是正弦曲线,只有幅度和相位可能发生变化,但是频率和波的形状仍是一样的。且只有正弦曲线才拥有这样的性质,正因如此我们才不用方波或三角波来表示。

为什么用三角函数展开
为什么 偏偏选择三角函数而不用其他函数进行分解?我们从物理系统的特征信号角度来解释。我们知道:大自然中很多现象可以抽象成一个线性时不变系统来研究,无论你用微分方程还是传递函数或者状态空间描述。线性时不变系统可以这样理解:输入输出信号满足线性关系,而且系统参数不随时间变换。对于大自然界的很多系统,一个正弦曲线信号输入后,输出的仍是正弦曲线,只有幅度和相位可能发生变化,但是频率和波的形状仍是一样的。也就是说正弦信号是系统的特征向量!当然,指数信号也是系统的特征向量,表示能量的衰减或积聚。自然界的衰减或者扩散现象大多是指数形式的,或者既有波动又有指数衰减(复指数 形式),因此具有特征的基函数就由三角函数变成复指数函数。但是,如果输入是方波、三角波或者其他什么波形,那输出就不一定是什么样子了。所以,除了指数信号和正弦信号以外的其他波形都不是线性系统的特征信号。

用正弦曲线来代替原来的曲线而不用方波或三角波或者其他什么函数来表示的原因在于:正弦信号恰好是很多线性时不变系统的特征向量。于是就有了傅里叶变换。对于更一般的线性时不变系统,复指数信号(表示耗散或衰减)是系统的“特征向量”。于是就有了拉普拉斯变换。z变换也是同样的道理,这时是离散系统的“特征向量”。这里没有区分特征函数和特征向量的概念,主要想表达二者的思想是相同的,只不过一个是有限维向量,一个是无限维函数。
傅里叶级数和傅里叶变换其实就是我们之前讨论的特征值与特征向量的问题。分解信号的方法是无穷的,但分解信号的目的是为了更加简单地处理原来的信号。这样,用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有的性质:正弦曲线保真度。且只有正弦曲线才拥有这样的性质。
这也解释了为什么我们一碰到信号就想方设法的把它表示成正弦量或者复指数量的形式;为什么方波或者三角波如此“简单”,我们非要展开的如此“麻烦”;为什么对于一个没有什么规律的“非周期”信号,我们都绞尽脑汁的用正弦量展开。就因为正弦量(或复指数)是特征向量。
…………

热传导方程物理动机:
热传导在三维的等方向均匀介质里的传播可用以下方程表达:

其中:u=u(t,x,y,z)表温度,它是时间变数t与空间变数(x,y,z)的函数; 是空间中一点的温度对时间的变化率; 与 温度对三个空间坐标轴的二次导数;k是热扩散率,决定于材料的热传导率、密度与热容。
热方程是傅里叶冷却律的一个推论(详见条目热传导)。如果考虑的介质不是整个空间,则为了得到方程的唯一解,必须指定u的边界条件。如果介质是整个空间,为了得到唯一性,必须假定解的增长速度有个指数型的上界,此假定吻合实验结果。
热方程的解具有将初始温度平滑化的特质,这代表热从高温处向低温处传播。一般而言,许多不同的初始状态会趋向同一个稳态(热平衡)。因此我们很难从现存的热分布反解初始状态,即使对极短的时间间隔也一样。
热方程也是抛物线偏微分方程最简单的例子。利用拉普拉斯算子,热方程可推广为下述形式

其中的 是对空间变数的拉普拉斯算子。
热方程支配热传导及其它扩散过程,诸如粒子扩散或神经细胞的动作电势。热方程也可以作为某些金融现象的模型,诸如布莱克-斯科尔斯模型与Ornstein-Uhlenbeck过程。热方程及其非线性的推广型式也被应用于影像分析。量子力学中的薛定谔方程虽然有类似热方程的数学式(但时间参数为纯虚数),本质却不是扩散问题,解的定性行为也完全不同。
就技术上来说,热方程违背狭义相对论,因为它的解表达了一个扰动可以在瞬间传播至空间各处。扰动在前方光锥外的影响通常可忽略不计,但是若要为热传导推出一个合理的速度,则须转而考虑一个双曲线型偏微分方程。
…………

温室效应原理:
世界上,宇宙中任何物体都辐射电磁波。物体温度越高,辐射的波长越短。太阳表面温度约6000K,它发射的电磁波长很短,称为太阳短波辐射(其中包括从紫到红的可见光)。地面在接受太阳短波辐射而增温的同时,也时时刻刻向外辐射电磁波而冷却。地球发射的电磁波长因为温度较低而较长,称为地面长波辐射。短波辐射和长波辐射在经过地球大气时的遭遇是不同的:大气对太阳短波辐射几乎是透明的,却强烈吸收地面长波辐射。大气在吸收地面长波辐射的同时,它自己也向外辐射波长更长的长波辐射(因为大气的温度比地面更低)。其中向下到达地面的部分称为逆辐射。地面接受逆辐射后就会升温,或者说大气对地面起到了保温作用。这就是大气温室效应的原理。
…………

申明

      1. 本平台部分内容为原创,相关版权归本平台所有,仅供注册用户观看,如未经许可,禁止拷贝、录屏、反向工程、技术下载等手段非法获取;
      2. 本平台旨在为行业提供资源分享空间,由第三方用户转载分享的免费内容,本平台不对其内容的版权归属负责,如有版权问题,请联系第三方用户删除,或者请联系平台客服协助处理。

发布 推广

简介

曜学汇

我很低调...



推荐

系列视频

暂无系列内容!

  • 更多...
  •  
     
    • 设计精良 制作精心
    • 广
      大咖齐聚 领域广泛
    • 团队支撑 专业保证
    • 功能丰富 营销多元